137 research outputs found

    Microfluidic technologies for accelerating the clinical translation of nanoparticles

    Get PDF
    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.Prostate Cancer Foundation (Award in Nanotherapeutics)MIT-Harvard Center for Cancer Nanotechnology Excellence (U54-CA151884)National Heart, Lung, and Blood Institute (Programs of Excellence in Nanotechnology (HHSN268201000045C))National Science Foundation (U.S.) (Graduate Research Fellowship

    Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy

    Get PDF
    Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have developed a microfluidic platform for the rapid, combinatorial synthesis and optimization of NPs. The system takes in a number of NP precursors from which a library of NPs with varying size, surface charge, target ligand density, and drug load is produced in a reproducible manner. We rapidly synthesized 45 different formulations of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) NPs of different size and surface composition and screened and ranked the NPs for their ability to evade macrophage uptake in vitro. Comparison of the results to pharmacokinetic studies in vivo in mice revealed a correlation between in vitro screen and in vivo behavior. Next, we selected NP synthesis parameters that resulted in longer blood half-life and used the microfluidic platform to synthesize targeted NPs with varying targeting ligand density (using a model targeting ligand against cancer cells). We screened NPs in vitro against prostate cancer cells as well as macrophages, identifying one formulation that exhibited high uptake by cancer cells yet similar macrophage uptake compared to nontargeted NPs. In vivo, the selected targeted NPs showed a 3.5-fold increase in tumor accumulation in mice compared to nontargeted NPs. The developed microfluidic platform in this work represents a tool that could potentially accelerate the discovery and clinical translation of NPs.Prostate Cancer Foundation (Award in Nanotherapeutics)National Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence at MIT-Harvard U54-CA151884National Heart, Lung, and Blood Institute (Programs of Excellence in Nanotechnology HHSN268201000045C)National Science Foundation (U.S.). Graduate Research FellowshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence. Graduate Research Fellowship

    Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall-Targeted Delivery of Antibiotics

    Get PDF
    Bacteria have shown a remarkable ability to overcome drug therapy if there is a failure to achieve sustained bactericidal concentration or if there is a reduction in activity in situ. The latter can be caused by localized acidity, a phenomenon that can occur as a result of the combined actions of bacterial metabolism and the host immune response. Nanoparticles (NP) have shown promise in treating bacterial infections, but a significant challenge has been to develop antibacterial NPs that may be suitable for systemic administration. Herein we develop drug-encapsulated, pH-responsive, surface charge-switching poly(d,l-lactic-co-glycolic acid)-b-poly(l-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for treating bacterial infections. These NP drug carriers are designed to shield nontarget interactions at pH 7.4 but bind avidly to bacteria in acidity, delivering drugs and mitigating in part the loss of drug activity with declining pH. The mechanism involves pH-sensitive NP surface charge switching, which is achieved by selective protonation of the imidazole groups of PLH at low pH. NP binding studies demonstrate pH-sensitive NP binding to bacteria with a 3.5 ± 0.2- to 5.8 ± 0.1-fold increase in binding to bacteria at pH 6.0 compared to 7.4. Further, PLGA-PLH-PEG-encapsulated vancomycin demonstrates reduced loss of efficacy at low pH, with an increase in minimum inhibitory concentration of 1.3-fold as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-encapsulated vancomycin, respectively. The PLGA-PLH-PEG NPs described herein are a first step toward developing systemically administered drug carriers that can target and potentially treat Gram-positive, Gram-negative, or polymicrobial infections associated with acidity.National Institutes of Health (U.S.) (Grant CA151884)National Institutes of Health (U.S.) (Grant EB003647)Prostate Cancer Foundation (Award in Nanotherapeutics)United States. Dept. of Defense (Prostate Cancer Research Program PC 051156)MIT-Portugal ProgramNational Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Office of the Director Grant DP2OD008435

    Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles

    Get PDF
    The engineering of drug-encapsulated targeted nanoparticles (NPs) has the potential to revolutionize drug therapy. A major challenge for the smooth translation of targeted NPs to the clinic has been developing methods for the prediction and optimization of the NP surface composition, especially when targeting ligands (TL) of different chemical properties are involved in the NP self-assembly process. Here we investigated the self-assembly and properties of two different targeted NPs decorated with two widely used TLs that have different water solubilities, and developed methods to characterize and optimize NP surface composition. We synthesized two different biofunctional polymers composed of poly(lactide-co-glycolide)-b-polyethyleneglycol-RGD (PLGA-PEG-RGD, high water solubility TL) and PLGA-PEG-Folate (low water solubility TL). Targeted NPs with different ligand densities were prepared by mixing TL-conjugated polymers with non-conjugated PLGA-PEG at different ratios through nanoprecipitation. The NP surface composition was quantified and the results revealed two distinct nanoparticle assembly behaviors: for the case of PLGA-PEG-RGD, nearly all RGD molecules conjugated to the polymer were found to be on the surface of the NPs. In contrast, only ~20% of the folate from PLGA-PEG-Folate was present on the NP surface while the rest remained presumably buried in the PLGA NP core due to hydrophobic interactions of PLGA and folate. Finally, in vitro phagocytosis and cell targeting of NPs were investigated, from which a window of NP formulations exhibiting minimum uptake by macrophages and maximum uptake by targeted cells was determined. These results underscore the impact that the ligand chemical properties have on the targeting capabilities of self-assembled targeted nanoparticles and provide an engineering strategy for improving their targeting specificity.Prostate Cancer Foundation (Award in Nanotherapeutics)National Cancer Institute (U.S.) (Center of Cancer Nanotechnology Excellence at MIT-Harvard U54-CA151884)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology Award Contract HHSN268201000045C)National Science Foundation (U.S.). Graduate Research Fellowshi

    Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    Get PDF
    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13-150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies

    Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices

    Get PDF
    Lipid–polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process but are restricted by a low throughput. In this study, we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e., Reynolds number (30–150)) we can control the nanoparticle size (30–170 nm) with high productivity (~3 g/hour) and low polydispersity (~0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery.National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)National Cancer Institute (U.S.) (Grant P01 CA151884)Prostate Cancer Foundation (Award in Nanotherapeutics

    Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery

    Get PDF
    Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. We show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7%*hour compared with only 1.2%*hour for nontargeted nanoparticles. In addition, targeted nanoparticles containing insulin as a model nanoparticle-based therapy for diabetes were orally administered at a clinically relevant insulin dose of 1.1 U/kg and elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in FcRn knockout mice, indicating that the enhanced nanoparticle transport was specifically due to FcRn. FcRn-targeted nanoparticles may have a major impact on the treatment of many diseases by enabling drugs currently limited by low bioavailability to be efficiently delivered though oral administration.Prostate Cancer Foundation (Award in Nanotherapeutics)National Cancer Institute (U.S.) (Center for Cancer Nanotechnology Excellence U54-CA151884)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology Award Contract HHSN268201000045C)National Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (R01 Grant EB015419-01)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Cancer Institute (U.S.) (Center for Cancer Nanotechnology Excellence Graduate Research Fellowship 5 U54 CA151884-02

    Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    Get PDF
    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.Prostate Cancer Foundation (Award in Nanotherapeutics)National Institutes of Health (U.S.) (Grant EB015419)National Institutes of Health (U.S.) (Grant CA119349

    Micropatterned cell co-cultures using layer-bylayer deposition of extracellular matrix components

    Get PDF
    Abstract Micropatterned cellular co-cultures were fabricated using three major extracellular matrix components: hyaluronic acid (HA), fibronectin (FN) and collagen. To fabricate co-cultures with these components, HA was micropatterned on a glass substrate by capillary force lithography, and the regions of exposed glass were coated with FN to generate cell adhesive islands. Once the first cell type was immobilized on the adhesive islands, the subsequent electrostatic adsorption of collagen to HA patterns switched the non-adherent HA surfaces to adherent, thereby facilitating the adhesion of a second cell type. This technique utilized native extracellular matrix components and therefore affords high biological affinity and no cytotoxicity. This biocompatible co-culture system could potentially provide a new tool to study cell behavior such as cell-cell communication and cell-matrix interactions, as well as tissue-engineering applications.
    • …
    corecore